
Contextualization/Design Check-In

Team: sdmay25-33

Advisor: Phillip Jones
Caden Otis, Devin Alamsya, Justin Cano, Joseph Krejchi, Rachel Druce-Hoffman



Project Overview
● Create an interactive application for CPRE 2880 

students to better understand the concepts
○ HWs and quizzes 
○ Randomized questions and autograding
○ Use emulation tools to simulate 

microcontrollers
○ Potentially have an emulated Cybot robot 

interface 

● PrairieLearn framework to host the application

● Utilize Python, JavaScript, C and other 
programming languages 

● Hope to inspire other professors to build 
similar interactive tools for their students 



Problem Statement
● Students don’t get enough practice of concepts 

○ Little feedback on Canvas HW submissions

● Not always availability to practice programming on 

the microcontroller in the lab

● Limited time to meet with Professor and TAs

○ Lab, class, office hours

● Limited capabilities with Canvas platform



Journey Map
Persona: CPRE 2880 Student



Pros and Cons Table



Internal and External Tech. Complexities
● Internal Complexities

○ Linux

○ Docker

○ ISU VM

○ Python, C, HTML

○ Course/Student Management

○ Custom Emulators for ARM and Cybot

○ Custom autograders container for ARM assembly questions

● External Complexities

○ Engaging question elements (use what’s available or develop our own from ground up)

○ Other solutions are equivalent or lesser (288 relevance, ease to implement, flexibility)



Addressing User Needs
● All existing CPRE 2880 HWs have been uploaded to our application with randomization features

○ Useful for practice and studying

● Questions can be autograded and provide instant feedback to students

○ Relieves burden of professors and TAs manually grading assignments

● PrairieLearn is free to use for students

● Change: integrate Canvas into our application to sync grades

○ Further reduces workload for professors and TAs



Economic Solution
● Current solutions require payment from either the University or the students

○ The university would rather spend this money elsewhere

○ Adds added frustration and financial burden on students

○ Examples: Zybooks, Quizlet, TopHat

● Our PrairieLearn Solution would be free and open source

○ Courses can be created and personalized

○ Only requires that the department has people to work on it

■ Fair wages < buying commercial product



Technical Justification
● Design is very software-focused

○ A lot of tools we’ve never used before

● PrairieLearn is very complex

● Use of a VM

○ Manage and operate software in a virtual environment

● Custom emulation tools and autograder containers

○ Hardware simulation and automated testing

● Variety of programming languages

○ Python, C, HTML

○ Demonstrates our versatility to develop software in many languages.



Conclusion
● Our PrairieLearn solution addresses our users needs

○ Gives students a free and useful study tool

○ Relieves the grading burden from TA’s and Professor’s

● Our solution economically feasible

○ Free and open source for the university

● Our project is technically complex

○ Many different softwares, tools, and languages being used



Any Questions or 
Suggestions?


